系列文章
Dubbo整体设计
关于Dubbo的整体设计可以查看官方文档,下图可以清晰的表达Dubbo的整体设计:
1.图例说明
图中左边淡蓝背景的为服务消费方使用的接口,右边淡绿色背景的为服务提供方使用的接口,位于中轴线上的为双方都用到的接口;
图中从下至上分为十层,各层均为单向依赖,右边的黑色箭头代表层之间的依赖关系; 图中绿色小块的为扩展接口,蓝色小块为实现类,图中只显示用于关联各层的实现类; 图中蓝色虚线为初始化过程,即启动时组装链,红色实线为方法调用过程,即运行时调时链,紫色三角箭头为继承,可以把子类看作父类的同一个节点,线上的文字为调用的方法;2.各层说明
config 配置层:对外配置接口,以 ServiceConfig, ReferenceConfig 为中心,可以直接初始化配置类,也可以通过 spring 解析配置生成配置类;
proxy 服务代理层:服务接口透明代理,生成服务的客户端 Stub 和服务器端 Skeleton, 以 ServiceProxy 为中心,扩展接口为 ProxyFactory; registry 注册中心层:封装服务地址的注册与发现,以服务 URL 为中心,扩展接口为 RegistryFactory, Registry, RegistryService; cluster 路由层:封装多个提供者的路由及负载均衡,并桥接注册中心,以 Invoker 为中心,扩展接口为 Cluster, Directory, Router, LoadBalance; monitor 监控层:RPC 调用次数和调用时间监控,以 Statistics 为中心,扩展接口为 MonitorFactory, Monitor, MonitorService; protocol 远程调用层:封装 RPC 调用,以 Invocation, Result 为中心,扩展接口为 Protocol, Invoker, Exporter; exchange 信息交换层:封装请求响应模式,同步转异步,以 Request, Response 为中心,扩展接口为 Exchanger, ExchangeChannel, ExchangeClient, ExchangeServer; transport 网络传输层:抽象 mina 和 netty 为统一接口,以 Message 为中心,扩展接口为 Channel, Transporter, Client, Server, Codec; serialize 数据序列化层:可复用的一些工具,扩展接口为 Serialization, ObjectInput, ObjectOutput, ThreadPool;本文将从最底层的serialize层开始来对dubbo进行源码分析;
通讯框架
dubbo的底层通讯使用的是第三方框架,包括:netty,netty4,mina和grizzly;默认使用的是netty,分别提供了server端(服务提供方)和client端(服务消费方);下面已使用的netty为例来看那一下NettyServer的部分代码:
protected void doOpen() throws Throwable { NettyHelper.setNettyLoggerFactory(); ExecutorService boss = Executors.newCachedThreadPool(new NamedThreadFactory("NettyServerBoss", true)); ExecutorService worker = Executors.newCachedThreadPool(new NamedThreadFactory("NettyServerWorker", true)); ChannelFactory channelFactory = new NioServerSocketChannelFactory(boss, worker, getUrl().getPositiveParameter(Constants.IO_THREADS_KEY, Constants.DEFAULT_IO_THREADS)); bootstrap = new ServerBootstrap(channelFactory); final NettyHandler nettyHandler = new NettyHandler(getUrl(), this); channels = nettyHandler.getChannels(); // https://issues.jboss.org/browse/NETTY-365 // https://issues.jboss.org/browse/NETTY-379 // final Timer timer = new HashedWheelTimer(new NamedThreadFactory("NettyIdleTimer", true)); bootstrap.setOption("child.tcpNoDelay", true); bootstrap.setPipelineFactory(new ChannelPipelineFactory() { @Override public ChannelPipeline getPipeline() { NettyCodecAdapter adapter = new NettyCodecAdapter(getCodec(), getUrl(), NettyServer.this); ChannelPipeline pipeline = Channels.pipeline(); /*int idleTimeout = getIdleTimeout(); if (idleTimeout > 10000) { pipeline.addLast("timer", new IdleStateHandler(timer, idleTimeout / 1000, 0, 0)); }*/ pipeline.addLast("decoder", adapter.getDecoder()); pipeline.addLast("encoder", adapter.getEncoder()); pipeline.addLast("handler", nettyHandler); return pipeline; } }); // bind channel = bootstrap.bind(getBindAddress()); }
在启动服务提供方时就会调用此doOpen方法,用来启动服务端口,供消费方连接;以上代码就是常规的启动nettyServer端代码,因为本文重点介绍dubbo的序列化,所以这里主要看decoder和encoder,这两个类分别定义在NettyCodecAdapter中:
private final ChannelHandler encoder = new InternalEncoder();private final ChannelHandler decoder = new InternalDecoder();
1.编码器
在NettyCodecAdapter定义了内部类InternalEncoder:
private class InternalEncoder extends OneToOneEncoder { @Override protected Object encode(ChannelHandlerContext ctx, Channel ch, Object msg) throws Exception { com.alibaba.dubbo.remoting.buffer.ChannelBuffer buffer = com.alibaba.dubbo.remoting.buffer.ChannelBuffers.dynamicBuffer(1024); NettyChannel channel = NettyChannel.getOrAddChannel(ch, url, handler); try { codec.encode(channel, buffer, msg); } finally { NettyChannel.removeChannelIfDisconnected(ch); } return ChannelBuffers.wrappedBuffer(buffer.toByteBuffer()); } }
此类其实是对codec的包装,本身并没有做编码处理,下面重点看一下codec类,此类是一个接口类,有多种实现类,Codec2源码如下:
@SPIpublic interface Codec2 { @Adaptive({Constants.CODEC_KEY}) void encode(Channel channel, ChannelBuffer buffer, Object message) throws IOException; @Adaptive({Constants.CODEC_KEY}) Object decode(Channel channel, ChannelBuffer buffer) throws IOException; enum DecodeResult { NEED_MORE_INPUT, SKIP_SOME_INPUT } }
实现包括:TransportCodec,TelnetCodec,ExchangeCodec,DubboCountCodec以及ThriftCodec,当然也可以自行扩展;不可能启动时把每种类型都加载,dubbo是通过在配置文件中配置好所有的类型,然后在运行中需要什么类加载什么类,
配置文件的具体路径:META-INF/dubbo/internal/com.alibaba.dubbo.remoting.Codec2,内容如下:transport=com.alibaba.dubbo.remoting.transport.codec.TransportCodectelnet=com.alibaba.dubbo.remoting.telnet.codec.TelnetCodecexchange=com.alibaba.dubbo.remoting.exchange.codec.ExchangeCodecdubbo=com.alibaba.dubbo.rpc.protocol.dubbo.DubboCountCodecthrift=com.alibaba.dubbo.rpc.protocol.thrift.ThriftCodec
获取具体Codec2的代码如下:
protected static Codec2 getChannelCodec(URL url) { String codecName = url.getParameter(Constants.CODEC_KEY, "telnet"); if (ExtensionLoader.getExtensionLoader(Codec2.class).hasExtension(codecName)) { return ExtensionLoader.getExtensionLoader(Codec2.class).getExtension(codecName); } else { return new CodecAdapter(ExtensionLoader.getExtensionLoader(Codec.class) .getExtension(codecName)); }}
通过在url中获取是否有关键字codec,如果有的话就获取当前的值,dubbo默认的codec为dubbo;如果没有值默认为telnet;这里有默认值为dubbo,所以实现类DubboCountCodec会被ExtensionLoader进行加载并进行缓存,下面具体看一下DubboCountCodec的编解码;
private DubboCodec codec = new DubboCodec(); @Overridepublic void encode(Channel channel, ChannelBuffer buffer, Object msg) throws IOException { codec.encode(channel, buffer, msg);}
DubboCountCodec内部调用的是DubboCodec的encode方法,看一下如何对Request对象进行编码的,具体代码块如下:
protected void encodeRequest(Channel channel, ChannelBuffer buffer, Request req) throws IOException { Serialization serialization = getSerialization(channel); // header. byte[] header = new byte[HEADER_LENGTH]; // set magic number. Bytes.short2bytes(MAGIC, header); // set request and serialization flag. header[2] = (byte) (FLAG_REQUEST | serialization.getContentTypeId()); if (req.isTwoWay()) header[2] |= FLAG_TWOWAY; if (req.isEvent()) header[2] |= FLAG_EVENT; // set request id. Bytes.long2bytes(req.getId(), header, 4); // encode request data. int savedWriteIndex = buffer.writerIndex(); buffer.writerIndex(savedWriteIndex + HEADER_LENGTH); ChannelBufferOutputStream bos = new ChannelBufferOutputStream(buffer); ObjectOutput out = serialization.serialize(channel.getUrl(), bos); if (req.isEvent()) { encodeEventData(channel, out, req.getData()); } else { encodeRequestData(channel, out, req.getData(), req.getVersion()); } out.flushBuffer(); if (out instanceof Cleanable) { ((Cleanable) out).cleanup(); } bos.flush(); bos.close(); int len = bos.writtenBytes(); checkPayload(channel, len); Bytes.int2bytes(len, header, 12); // write buffer.writerIndex(savedWriteIndex); buffer.writeBytes(header); // write header. buffer.writerIndex(savedWriteIndex + HEADER_LENGTH + len); }
前两个字节存放了魔数:0xdabb;第三个字节包含了四个信息分别是:是否是请求消息(还是响应消息),序列化类型,是否双向通信,是否是心跳消息;
在请求消息中直接跳过了第四个字节,直接在5-12位置存放了requestId,是一个long类型,第四个字节在如果是编码响应消息中会存放响应的状态; 代码往下看,buffer跳过了HEADER_LENGTH长度的字节,这里表示的是header部分的长度为16个字节,然后通过指定的序列化方式把data对象序列化到buffer中,序列化之后可以获取到data对象总共的字节数,用一个int类型来保存字节数,此int类型存放在header的最后四个字节中; 最后把buffer的writerIndex设置到写完header和data的地方,防止数据被覆盖;2.解码器
在NettyCodecAdapter定义了内部类InternalEncoder,同样是调用DubboCodec的decode方法,部分代码如下:
public Object decode(Channel channel, ChannelBuffer buffer) throws IOException { int readable = buffer.readableBytes(); byte[] header = new byte[Math.min(readable, HEADER_LENGTH)]; buffer.readBytes(header); return decode(channel, buffer, readable, header); } @Override protected Object decode(Channel channel, ChannelBuffer buffer, int readable, byte[] header) throws IOException { // check magic number. if (readable > 0 && header[0] != MAGIC_HIGH || readable > 1 && header[1] != MAGIC_LOW) { int length = header.length; if (header.length < readable) { header = Bytes.copyOf(header, readable); buffer.readBytes(header, length, readable - length); } for (int i = 1; i < header.length - 1; i++) { if (header[i] == MAGIC_HIGH && header[i + 1] == MAGIC_LOW) { buffer.readerIndex(buffer.readerIndex() - header.length + i); header = Bytes.copyOf(header, i); break; } } return super.decode(channel, buffer, readable, header); } // check length. if (readable < HEADER_LENGTH) { return DecodeResult.NEED_MORE_INPUT; } // get data length. int len = Bytes.bytes2int(header, 12); checkPayload(channel, len); int tt = len + HEADER_LENGTH; if (readable < tt) { return DecodeResult.NEED_MORE_INPUT; } // limit input stream. ChannelBufferInputStream is = new ChannelBufferInputStream(buffer, len); try { return decodeBody(channel, is, header); } finally { if (is.available() > 0) { try { if (logger.isWarnEnabled()) { logger.warn("Skip input stream " + is.available()); } StreamUtils.skipUnusedStream(is); } catch (IOException e) { logger.warn(e.getMessage(), e); } } } }
首先读取Math.min(readable, HEADER_LENGTH),如果readable小于HEADER_LENGTH,表示接收方连头部的16个字节还没接受完,需要等待接收;正常header接收完之后需要进行检查,主要包括:魔数的检查,header消息长度检查,消息体长度检查(检查消息体是否已经接收完成);检查完之后需要对消息体进行反序列化,具体在decodeBody方法中:
@Override protected Object decodeBody(Channel channel, InputStream is, byte[] header) throws IOException { byte flag = header[2], proto = (byte) (flag & SERIALIZATION_MASK); Serialization s = CodecSupport.getSerialization(channel.getUrl(), proto); // get request id. long id = Bytes.bytes2long(header, 4); if ((flag & FLAG_REQUEST) == 0) { // decode response. Response res = new Response(id); if ((flag & FLAG_EVENT) != 0) { res.setEvent(Response.HEARTBEAT_EVENT); } // get status. byte status = header[3]; res.setStatus(status); if (status == Response.OK) { try { Object data; if (res.isHeartbeat()) { data = decodeHeartbeatData(channel, deserialize(s, channel.getUrl(), is)); } else if (res.isEvent()) { data = decodeEventData(channel, deserialize(s, channel.getUrl(), is)); } else { DecodeableRpcResult result; if (channel.getUrl().getParameter( Constants.DECODE_IN_IO_THREAD_KEY, Constants.DEFAULT_DECODE_IN_IO_THREAD)) { result = new DecodeableRpcResult(channel, res, is, (Invocation) getRequestData(id), proto); result.decode(); } else { result = new DecodeableRpcResult(channel, res, new UnsafeByteArrayInputStream(readMessageData(is)), (Invocation) getRequestData(id), proto); } data = result; } res.setResult(data); } catch (Throwable t) { if (log.isWarnEnabled()) { log.warn("Decode response failed: " + t.getMessage(), t); } res.setStatus(Response.CLIENT_ERROR); res.setErrorMessage(StringUtils.toString(t)); } } else { res.setErrorMessage(deserialize(s, channel.getUrl(), is).readUTF()); } return res; } else { // decode request. Request req = new Request(id); req.setVersion(Version.getProtocolVersion()); req.setTwoWay((flag & FLAG_TWOWAY) != 0); if ((flag & FLAG_EVENT) != 0) { req.setEvent(Request.HEARTBEAT_EVENT); } try { Object data; if (req.isHeartbeat()) { data = decodeHeartbeatData(channel, deserialize(s, channel.getUrl(), is)); } else if (req.isEvent()) { data = decodeEventData(channel, deserialize(s, channel.getUrl(), is)); } else { DecodeableRpcInvocation inv; if (channel.getUrl().getParameter( Constants.DECODE_IN_IO_THREAD_KEY, Constants.DEFAULT_DECODE_IN_IO_THREAD)) { inv = new DecodeableRpcInvocation(channel, req, is, proto); inv.decode(); } else { inv = new DecodeableRpcInvocation(channel, req, new UnsafeByteArrayInputStream(readMessageData(is)), proto); } data = inv; } req.setData(data); } catch (Throwable t) { if (log.isWarnEnabled()) { log.warn("Decode request failed: " + t.getMessage(), t); } // bad request req.setBroken(true); req.setData(t); } return req; } }
首先通过解析header部分的第三个字节,识别出是请求消息还是响应消息,还有使用哪种类型的序列化方式,然后分别进行序列化;
序列化和反序列化
通过以上对编码器解码器的了解,在编码器中需要序列化Request/Response,在解码器中需要序列化Request/Response,下面具体看看序列化和反序列化;
1.序列化
在编码器中需要获取具体的Serialization,具体代码如下:
public static Serialization getSerialization(URL url) { return ExtensionLoader.getExtensionLoader(Serialization.class).getExtension( url.getParameter(Constants.SERIALIZATION_KEY, Constants.DEFAULT_REMOTING_SERIALIZATION));}
同获取codec的方式,dubbo也提供了多种序列化方式,同时可以自定义扩展;通过在url中获取serialization关键字,如果获取不到默认为hession2;同样多种序列化类也配置在一个文件中,
路径:META-INF/dubbo/internal/com.alibaba.dubbo.common.serialize.Serialization,具体内容如下:fastjson=com.alibaba.dubbo.common.serialize.fastjson.FastJsonSerializationfst=com.alibaba.dubbo.common.serialize.fst.FstSerializationhessian2=com.alibaba.dubbo.common.serialize.hessian2.Hessian2Serializationjava=com.alibaba.dubbo.common.serialize.java.JavaSerializationcompactedjava=com.alibaba.dubbo.common.serialize.java.CompactedJavaSerializationnativejava=com.alibaba.dubbo.common.serialize.nativejava.NativeJavaSerializationkryo=com.alibaba.dubbo.common.serialize.kryo.KryoSerialization
dubbo默认提供了fastjson,fst,hessian2,java,compactedjava,nativejava和kryo多种序列化方式;
每种序列化方式都需要实现如下三个接口类:Serialization,ObjectInput以及ObjectOutput; Serialization接口类:public interface Serialization { byte getContentTypeId(); String getContentType(); @Adaptive ObjectOutput serialize(URL url, OutputStream output) throws IOException; @Adaptive ObjectInput deserialize(URL url, InputStream input) throws IOException; }
其中的ContentTypeId就是在header中存放的序列化类型,反序列化的时候需要通过此id获取具体的Serialization,所以此ContentTypeId不能出现重复的,否则会被覆盖;
ObjectInput接口类:public interface ObjectOutput extends DataOutput { void writeObject(Object obj) throws IOException;}
ObjectOutput接口类:
public interface ObjectInput extends DataInput { Object readObject() throws IOException, ClassNotFoundException;T readObject(Class cls) throws IOException, ClassNotFoundException; T readObject(Class cls, Type type) throws IOException, ClassNotFoundException;}
分别提供了读取对象和写对象的接口方法,DataOutput和DataInput分别提供了对基本数据类型的读和写;序列化只需要调用writeObject方法将Data写入数据流即可;具体可以看一下编码器中调用的encodeRequestData方法:
@Overrideprotected void encodeRequestData(Channel channel, ObjectOutput out, Object data, String version) throws IOException { RpcInvocation inv = (RpcInvocation) data; out.writeUTF(version); out.writeUTF(inv.getAttachment(Constants.PATH_KEY)); out.writeUTF(inv.getAttachment(Constants.VERSION_KEY)); out.writeUTF(inv.getMethodName()); out.writeUTF(ReflectUtils.getDesc(inv.getParameterTypes())); Object[] args = inv.getArguments(); if (args != null) for (int i = 0; i < args.length; i++) { out.writeObject(encodeInvocationArgument(channel, inv, i)); } out.writeObject(inv.getAttachments());}
默认使用的DubboCountCodec方式并没有直接将data写入流中,而是将RpcInvocation中的数据取出分别写入流;
2.反序列化
反序列化通过读取header中的序列化类型,然后通过如下方法获取具体的Serialization,具体在类CodecSupport中:
public static Serialization getSerialization(URL url, Byte id) throws IOException { Serialization serialization = getSerializationById(id); String serializationName = url.getParameter(Constants.SERIALIZATION_KEY, Constants.DEFAULT_REMOTING_SERIALIZATION); // Check if "serialization id" passed from network matches the id on this side(only take effect for JDK serialization), for security purpose. if (serialization == null || ((id == 3 || id == 7 || id == 4) && !(serializationName.equals(ID_SERIALIZATIONNAME_MAP.get(id))))) { throw new IOException("Unexpected serialization id:" + id + " received from network, please check if the peer send the right id."); } return serialization;} private static MapID_SERIALIZATION_MAP = new HashMap (); public static Serialization getSerializationById(Byte id) { return ID_SERIALIZATION_MAP.get(id);}
ID_SERIALIZATION_MAP存放着ContentTypeId和具体Serialization的对应关系,然后通过id获取具体的Serialization,然后根据写入的顺序读取数据;
扩展序列化类型
dubbo本身对很多模块提供了很好的扩展功能,包括序列化功能,以下来分析一下如何使用protobuf来实现序列化方式;
1.整体代码结构
首先看一下整体的代码结构,如下图所示:
分别实现三个接口类:Serialization,ObjectInput以及ObjectOutput;然后在指定目录下提供一个文本文件;2.引入扩展包
com.dyuproject.protostuff protostuff-core 1.1.3 com.dyuproject.protostuff protostuff-runtime 1.1.3
3.实现接口ObjectInput和ObjectOutput
public class ProtobufObjectInput implements ObjectInput { private ObjectInputStream input; public ProtobufObjectInput(InputStream inputStream) throws IOException { this.input = new ObjectInputStream(inputStream); } ....省略基础类型... @Override public Object readObject() throws IOException, ClassNotFoundException { return input.readObject(); } @Override publicT readObject(Class clazz) throws IOException { try { byte[] buffer = (byte[]) input.readObject(); input.read(buffer); return SerializationUtil.deserialize(buffer, clazz); } catch (Exception e) { throw new IOException(e); } } @Override public T readObject(Class clazz, Type type) throws IOException { try { byte[] buffer = (byte[]) input.readObject(); input.read(buffer); return SerializationUtil.deserialize(buffer, clazz); } catch (Exception e) { throw new IOException(e); } }} public class ProtobufObjectOutput implements ObjectOutput { private ObjectOutputStream outputStream; public ProtobufObjectOutput(OutputStream outputStream) throws IOException { this.outputStream = new ObjectOutputStream(outputStream); } ....省略基础类型... @Override public void writeObject(Object v) throws IOException { byte[] bytes = SerializationUtil.serialize(v); outputStream.writeObject(bytes); outputStream.flush(); } @Override public void flushBuffer() throws IOException { outputStream.flush(); }}
4.实现Serialization接口
public class ProtobufSerialization implements Serialization { @Override public byte getContentTypeId() { return 10; } @Override public String getContentType() { return "x-application/protobuf"; } @Override public ObjectOutput serialize(URL url, OutputStream out) throws IOException { return new ProtobufObjectOutput(out); } @Override public ObjectInput deserialize(URL url, InputStream is) throws IOException { return new ProtobufObjectInput(is); }}
这里引入了一个新的ContentTypeId,需要保证和dubbo里面已存在的不要冲突
5.指定目录提供注册
在META-INF/dubbo/internal/目录下提供文件com.alibaba.dubbo.common.serialize.Serialization,内容如下:
protobuf=com.dubboCommon.ProtobufSerialization
6.在提供方配置新的序列化方式
这样就会使用新扩展的protobuf序列化方式来序列化对象;
总结
本文从dubbo整体设计的最底层serialization层来分析和了解dubbo,后面会逐层进行分析,对dubbo有一个更加透彻的了解;